About one multidimensional sum with Fibonacci Numbers.

Arkady M.Alt

05.02.2018

This note motivated by the following problem
[1]
Let $\left(f_{n}\right)$ be the Fibonacci sequence $f_{0}=0, f_{1}=1, f_{n+1}=f_{n}+f_{n-1}, n \in \mathbb{N}$.

Determine $h_{n}=\sum_{i, j, k} f_{i} f_{j} f_{k}$, where the sum is over $i, j, k>0$ and $i+j+k=n$.
We will consider general problem of calculation sum

$$
S_{m}(n):=\sum_{i_{1}, i_{2}, \ldots, i_{m} \geq 0}^{i_{1}+i_{2}+\ldots+i_{m}=n} f_{i_{1}} f_{i_{2} \ldots f_{i_{m}}}
$$

for any nonnegative integer m and $n \cdot\left(S_{0}(n)=0\right.$ as sum by empty set).
Easy to see that in particular $S_{m}(0)=0$ and $S_{1}(n)=f_{n}$.
We have $S_{m}(n)=\sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m}=n} f_{i_{1}} f_{i_{2}} \ldots f_{i_{m}}=$
$\sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1} \leq n} f_{i_{1}} f_{i_{2}} \ldots f_{i_{m-1}} f_{n-\left(i_{1}+i_{2}+\ldots+i_{m-1}\right)}=\sum_{k=1}^{n-1} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2} \ldots} f_{i_{m-1}} f_{n-k}$.
$S_{m}(n+1)=\sum_{k=1}^{n} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2} \ldots} \ldots f_{i_{m-1}} f_{n+1-k}=$
$\sum_{k=1}^{n} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2}} \ldots f_{i_{m-1}} f_{n-k}+\sum_{k=1}^{n} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2} \ldots} \ldots f_{i_{m-1}} f_{n-1-k}=$
$\sum_{k=1}^{n-1} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2} \ldots} \ldots f_{i_{m-1}} f_{n-k}+\sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=n} f_{i_{1}} f_{i_{2} \ldots} f_{i_{m-1}} f_{n-n}+$
$\sum_{k=1}^{n} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2} \ldots} f_{i_{m-1}} f_{n-1-k}=S_{m}(n)+\sum_{k=1}^{n-2} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2} \ldots} f_{i_{m-1}} f_{n-1-k}+$
$\sum_{k=n-1}^{n} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=k} f_{i_{1}} f_{i_{2}} \ldots f_{i_{m-1}} f_{n-1-k}=$

$$
\begin{align*}
& S_{m}(n)+S_{m}(n-1)+\sum_{\substack{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}}^{i_{1}+i_{2}+\ldots+i_{m-1}=n-1} f_{i_{1}} f_{i_{2} \ldots} f_{i_{m-1}} f_{n-1-(n-1)}+\sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0}^{i_{1}+i_{2}+\ldots+i_{m-1}=n} f_{i_{1}} f_{i_{2} \ldots i_{2}+\ldots+i_{m-1}=n} f_{i_{m-1}} f_{n-1-n}= \\
& S_{m}(n)+S_{m}(n-1)+\sum_{i_{i_{2}}, \ldots, i_{2-1}, \ldots, i_{m}, \geq 0} f_{-1}=S_{m}(n)+S_{m}(n-1)+ \\
& i_{i_{1}+i_{2}+\ldots+i_{m-1}=n} \sum_{i_{1}, i_{2}, \ldots, i_{m}, \geq 0} f_{i_{1}} f_{i_{2}} \ldots f_{i_{m-1}}=S_{m}(n)+S_{m}(n-1)+S_{m-1}(n) . \\
& \operatorname{Thus} S_{m}(n+1)=S_{m}(n)+S_{m}(n-1)+S_{m-1}(n), n, m \in \mathbb{N} .
\end{align*}
$$

Using recursion (1) we will find consequtively explicit formulas for $S_{2}(n), S_{3}(n)$ and $S_{4}(n)$.
Note, that since $f_{0}=0$ then $h_{n}=S_{3}(n)=\sum_{i, j, k \geq 0}^{i+j+k=n} f_{i} f_{j} f_{k}=\sum_{k=0}^{n} \sum_{i, j \geq 0}^{i+j=k} f_{i} f_{j} f_{n-k}$.
Also we will use
short notation g_{n} for sum $S_{2}(n)$ and s_{n} for sum $S_{4}(n)$.
Namely, for $m=2,3,4$ (1) becomes, respectively,

$$
\begin{align*}
& \quad S_{2}(n+1)=S_{2}(n)+S_{2}(n-1)+S_{1}(n) \Longleftrightarrow \\
& g_{n+1}=g_{n}+g_{n-1}+f_{n}, n \in \mathbb{N}, \tag{2}\\
& \quad S_{3}(n+1)=S_{3}(n)+S_{3}(n-1)+S_{2}(n) \Longleftrightarrow \\
& h_{n+1}=h_{n}+h_{n-1}+g_{n}, n \in \mathbb{N}, \tag{3}\\
& \\
& \quad S_{4}(n+1)=S_{4}(n)+S_{4}(n-1)+S_{3}(n) \tag{4}\\
& s_{n+1}=s_{n}+s_{n-1}+h_{n}, n \in \mathbb{N} .
\end{align*}
$$

Consider now Fibonacci Operator F defined by $F\left(a_{n}\right):=a_{n+1}-a_{n}-a_{n-1}$ for any sequence $\left(a_{n}\right)_{n>0}$ of real numbers and in particular for any integer k consider two special applications of operator F,namely:

1. $F\left(a_{n} f_{n+k}\right)=a_{n+1} f_{n+1+k}-a_{n} f_{n+k}-a_{n-1} f_{n-1+k}=a_{n+1}\left(f_{n+1+k}-f_{n+k}-f_{n-1+k}\right)+$
$a_{n+1} f_{n+k}+a_{n+1} f_{n-1+k}-a_{n} f_{n+k}-a_{n-1} f_{n-1+k}=\left(a_{n+1}-a_{n}\right) f_{n+k}+$ $\left(a_{n+1}-a_{n-1}\right) f_{n-1+k}=$
$\left(a_{n+1}-a_{n}\right) f_{n+k}+\left(a_{n+1}-a_{n-1}\right)\left(f_{n+1+k}-f_{n+k}\right)=\left(a_{n+1}-a_{n-1}\right) f_{n+k+1}-$ $\left(a_{n}-a_{n-1}\right) f_{n+k}$.

So, $F\left(a_{n} f_{n+k}\right)=\left(a_{n+1}-a_{n-1}\right) f_{n+k+1}-\left(a_{n}-a_{n-1}\right) f_{n+k}$
2. $F\left(a_{n} f_{n+k+1}\right)=a_{n+1} f_{n+k+2}-a_{n} f_{n+k+1}-a_{n-1} f_{n+k}=a_{n+1}\left(f_{n+k+2}-f_{n+k+1}-f_{n+k}\right)+$
$a_{n+1} f_{n+k+1}+a_{n+1} f_{n+k}-a_{n} f_{n+k+1}-a_{n-1} f_{n+k}=\left(a_{n+1}-a_{n}\right) f_{n+k+1}+$ $\left(a_{n+1}-a_{n-1}\right) f_{n+k}$.

So, $\quad F\left(a_{n} f_{n+k+1}\right)=\left(a_{n+1}-a_{n}\right) f_{n+k+1}+\left(a_{n+1}-a_{n-1}\right) f_{n+k}$.
Also note that $F\left(a_{n}\right)=0 \Longleftrightarrow a_{n}=\left(a_{1}-a_{0}\right) f_{n}+a_{0} f_{n+1}($ can be proved by Math Induction)
$\left(c_{2}=a_{0}, c_{1} \Longleftrightarrow\left\{\begin{array}{c}c_{2}=a_{0} \\ c_{1}+c_{2}=a_{1}\end{array}\right.\right.$
Now we ready to find g_{n}, h_{n} and after s_{n}.

Applying (5) and (6) to $a_{n}=n$ we obtain:
$F\left(n f_{n+k}\right)=2 f_{n+k}-f_{n+k-1}$ and $F\left(n f_{n+k+1}\right)=f_{n+k+1}+2 f_{n+k}$ for any integer k.

Since for $k=0$ we have $F\left(n f_{n+1}\right)=f_{n+1}+2 f_{n}$ and $F\left(n f_{n}\right)=2 f_{n+1}-f_{n}$
then

$$
\begin{align*}
& F\left(n f_{n+1}\right)+2 F\left(n f_{n}\right)=f_{n+1}+2 f_{n}+2\left(2 f_{n+1}-f_{n}\right)=5 f_{n+1} \text { and, therefore, } \\
& \quad f_{n+1}=F\left(\frac{n f_{n+1}+2 n f_{n}}{5}\right) \tag{7}
\end{align*}
$$

Also, $2 F\left(n f_{n+1}\right)-F\left(n f_{n}\right)=2 f_{n+1}+4 f_{n}-\left(2 f_{n+1}-f_{n}\right)=5 f_{n} \Longleftrightarrow$

$$
\begin{equation*}
f_{n}=F\left(\frac{2 n f_{n+1}-n f_{n}}{5}\right) \tag{8}
\end{equation*}
$$

Hence, $\mathbf{(2)} \Longleftrightarrow F\left(g_{n}\right)=F\left(\frac{2 n f_{n+1}-n f_{n}}{5}\right) \Longleftrightarrow$

$$
\begin{aligned}
& F\left(g_{n}-\frac{2 n f_{n+1}-n f_{n}}{5}\right)=0 \Longleftrightarrow \\
& g_{n}=\frac{2 n f_{n+1}-n f_{n}}{5}+c_{1} f_{n+1}+c_{2} f_{n}
\end{aligned}
$$

Since $g_{0}=0=c_{1} \cdot 1+c_{2} \cdot 0 \Longleftrightarrow c_{1}=0$ and

$$
g_{1}=0=c_{1} \cdot 1+c_{2} \cdot 1+\frac{2 \cdot 1-1}{5} \Longleftrightarrow
$$

$0=c_{2}+\frac{1}{5} \Longleftrightarrow c_{2}=-\frac{1}{5}$ then $g_{n}=\frac{2 n f_{n+1}-n f_{n}}{5}-\frac{f_{n}}{5}=\frac{2 n f_{n+1}-(n+1) f_{n}}{5}$.
Thus, $g_{n}=S_{2}(n)=\frac{2 n f_{n+1}-(n+1) f_{n}}{5}$
and now we can find h_{n}.
Applying (5) and (6) to $a_{n}=n^{2}$ we obtain:
$F\left(n^{2} f_{n+k}\right)=\left((n+1)^{2}-(n-1)^{2}\right) f_{n+k+1}-\left(n^{2}-(n-1)^{2}\right) f_{n+k}=$
$4 n f_{n+k+1}-(2 n-1) f_{n+k} \Longleftrightarrow F\left(n^{2} f_{n+k}\right)=4 n f_{n+k+1}-(2 n-1) f_{n+k}$
and
$F\left(n^{2} f_{n+k+1}\right)=\left((n+1)^{2}-n^{2}\right) f_{n+k+1}+\left((n+1)^{2}-(n-1)^{2}\right) f_{n+k}=$
$(2 n+1) f_{n+k+1}+4 n f_{n+k} \Longleftrightarrow F\left(n^{2} f_{n+k+1}\right)=(2 n+1) f_{n+k+1}+4 n f_{n+k}$
In particular for $k=0$ in (10) and (11) we obtain
$F\left(n^{2} f_{n}\right)=4 n f_{n+1}-(2 n-1) f_{n}$ and $F\left(n^{2} f_{n+1}\right)=(2 n+1) f_{n+1}+4 n f_{n}$.
Hence,
$F\left(2 n^{2} f_{n}\right)+F\left(n^{2} f_{n+1}\right)=8 n f_{n+1}-(4 n-2) f_{n}+(2 n+1) f_{n+1}+4 n f_{n}=$
$10 n f_{n+1} \Longleftrightarrow$
$10 n f_{n+1}=F\left(n^{2} f_{n+1}+2 n^{2} f_{n}\right)-2 f_{n}-f_{n+1} \Longleftrightarrow$
$10 n f_{n+1}=F\left(n^{2} f_{n+1}+2 n^{2} f_{n}\right)-2 F\left(\frac{2 n f_{n+1}-n f_{n}}{5}\right)-F\left(\frac{n f_{n+1}+2 n f_{n}}{5}\right) \Longleftrightarrow$
$10 n f_{n+1}=F\left(n^{2} f_{n+1}+2 n^{2} f_{n}-\frac{2\left(2 n f_{n+1}-n f_{n}\right)}{5}-\frac{n f_{n+1}+2 n f_{n}}{5}\right)=$
$F\left(\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}\right) \Longleftrightarrow f_{n+1}=F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{10}\right)$
and
$F\left(2 n^{2} f_{n+1}\right)-F\left(n^{2} f_{n}\right)=(4 n+2) f_{n+1}+8 n f_{n}-\left(4 n f_{n+1}-(2 n-1) f_{n}\right)=$
$10 n f_{n}-f_{n}+2 f_{n+1} \Longleftrightarrow F\left(2 n^{2} f_{n+1}-n^{2} f_{n}\right)=10 n f_{n}-f_{n}+2 f_{n+1} \Longleftrightarrow$
$10 n f_{n}=F\left(2 n^{2} f_{n+1}-n^{2} f_{n}\right)+f_{n}-2 f_{n+1} \Longleftrightarrow$
$10 n f_{n}=F\left(2 n^{2} f_{n+1}-n^{2} f_{n}\right)+F\left(\frac{2 n f_{n+1}-n f_{n}}{5}\right)-F\left(\frac{2 n f_{n+1}+4 n f_{n}}{5}\right)=$
$F\left(2 n^{2} f_{n+1}-n^{2} f_{n}+\frac{2 n f_{n+1}-n f_{n}}{5}-\left(\frac{2 n f_{n+1}+4 n f_{n}}{5}\right)\right)=F\left(2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}\right) \Longleftrightarrow$
$n f_{n}=F\left(\frac{2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}}{10}\right)=F\left(\frac{n g_{n}}{2}.\right)$.
Since $(n+1) f_{n}=n f_{n}+f_{n}=F\left(\frac{2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}}{10}\right)+F\left(\frac{2 n f_{n+1}-n f_{n}}{5}\right)=$
$F\left(\frac{2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}}{10}+\frac{2 n f_{n+1}-n f_{n}}{5}\right)=F\left(\frac{n\left(2(n+2) f_{n+1}-(n+3) f_{n}\right)}{10}\right)$
then using (13), (12) and (8) we obtain $5 g_{n}=2 n f_{n+1}-(n+1) f_{n}=$
$F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{5}\right)-F\left(\frac{2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}}{10}\right)-F\left(\frac{2 n f_{n+1}-n f_{n}}{5}\right)=$
$=F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{5}-\frac{2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}}{10}-\frac{2 n f_{n+1}-n f_{n}}{5}\right)=$
$F\left(\frac{\left(5 n^{2}+3 n\right) f_{n}-6 n f_{n+1}}{10}\right)$.
That is $g_{n}=F\left(\frac{\left(5 n^{2}+3 n\right) f_{n}-6 n f_{n+1}}{50}\right)$ and, therefore,
$\mathbf{(2)} \Longleftrightarrow F\left(h_{n}-\frac{\left(5 n^{2}+3 n\right) f_{n}-6 n f_{n+1}}{50}\right)=0 \Longrightarrow$

$$
h_{n}=\frac{\left(5 n^{2}+3 n\right) f_{n}-6 n f_{n+1}}{50}+c_{1} f_{n+1}+c_{2} f_{n}
$$

Since $h_{0}=0=c_{1}$ and $h_{1}=0=\frac{2}{50}+c_{2} \Longleftrightarrow c_{2}=-\frac{1}{25}$ then

$$
\begin{gathered}
h_{n}=\frac{\left(5 n^{2}+3 n\right) f_{n}-6 n f_{n+1}}{50}-\frac{f_{n}}{25}=\frac{\left(5 n^{2}+3 n-2\right) f_{n}-6 n f_{n+1}}{50} . \text { Thus, } \\
h_{n}=S_{3}(n)=\frac{\left(5 n^{2}+3 n-2\right) f_{n}-6 n f_{n+1}}{50}
\end{gathered}
$$

Remark.

Now we consider another way to obtain g_{n}.
Note that $F\left(F\left(g_{n}\right)\right)=F\left(f_{n}\right)=0$ and $F\left(F\left(F\left(h_{n}\right)\right)\right)=F\left(F\left(g_{n}\right)\right)=$ $F\left(f_{n}\right)=0$.

Since characteristic polynomials of $F\left(F\left(g_{n}\right)\right)$ and $F\left(F\left(F\left(h_{n}\right)\right)\right)$ are $\left(x^{2}-x-1\right)^{2}$ and $\left(x^{2}-x-1\right)^{3}$ respectively, then

$$
g_{n}, h_{n}=P(n) \phi^{n}+Q(n) \bar{\phi}^{n}
$$

where $\phi, \bar{\phi}$ roots of equation $x^{2}-x-1-0$ and $P(x), Q(x)$ polynomials of degree that does not exceed 1 in the case of g_{n} and 2 in the case of h_{n}. Since ϕ^{n} and $\bar{\phi}^{n}$ can be represented as linear combination of $f_{\underline{n}+1}$ and f_{n} then also we can represent g_{n}, h_{n} in the form $P(n) \phi^{n}+Q(n) \bar{\phi}^{n}$, namely
$g_{n}=(a n+b) f_{n+1}+(c n+d) f_{n}=a n f_{n+1}+(c n+d) f_{n}$
(because $g_{0}=0$) and $h_{n}=\left(a n^{2}+b n+c\right) f_{n+1}+\left(p n^{2}+q n+r\right) f_{n}=$ $\left(a n^{2}+b n\right) f_{n+1}+\left(p n^{2}+q n+r\right) f_{n}$ (because $\left.h_{0}=0\right)$,
where $g_{0}=g_{1}=0, g_{2}=1, g_{3}=2, h_{0}=h_{1}=h_{2}=0, h_{3}=1, h_{4}=3$
Since $g_{1}=0 \Longleftrightarrow a+c+d=0, g_{2}=1 \Longleftrightarrow 4 a+2 c+d=1, g_{3}=2 \Longleftrightarrow$ $9 a+6 c+2 d=2$ then $\left\{\begin{array}{c}3 a+c=1 \\ 7 a+4 c=2\end{array} \Longleftrightarrow\left\{\begin{array}{c}a=2 / 5 \\ c=-1 / 5\end{array} \Longrightarrow d=-1 / 5\right.\right.$ and, therefore,

$$
g_{n}=\frac{2 n f_{n+1}-(n+1) f_{n}}{5}
$$

Or, we can obtain g_{n} by substitution $g_{n}=a n f_{n+1}+(c n+d) f_{n}$ in $g_{n+1}-g_{n}-g_{n-1}=f_{n}$.
Indeed,
$a(n+1) f_{n+2}+(c(n+1)+d) f_{n+1}-a n f_{n+1}-(c n+d) f_{n}-a(n-1) f_{n}-$ $(c(n-1)+d) f_{n-1}=f_{n} \Longleftrightarrow a(n+1)\left(f_{n+1}+f_{n}\right)+(c(n+1)+d) f_{n+1}-$ $a n f_{n+1}-(c n+d) f_{n}-a(n-1) f_{n}-(c(n-1)+d)\left(f_{n+1}-f_{n}\right)=$ $f_{n} \Longleftrightarrow(a+2 c) f_{n+1}+(2 a-c) f_{n}=f_{n} \Longrightarrow$
$\left\{\begin{array}{l}a+2 c=0 \\ 2 a-c=1\end{array} \Longleftrightarrow\left\{\begin{array}{c}a=2 / 5 \\ c=-1 / 5\end{array}\right.\right.$.
Since F annulate the $d f_{n}$ then value of d we can't obtain by this way.
But we can use $g_{1}=0 \Longleftrightarrow a+c+d=0 \Longrightarrow d=-1 / 5$.
Similarly, we can find h_{n}, namely, since F annulate the $r f_{n}$ we can determine a, b, p, q by consideration identity
$F\left(\left(a n^{2}+b n\right) f_{n+1}+\left(p n^{2}+q n\right) f_{n}\right)=\frac{2 n f_{n+1}-(n+1) f_{n}}{5}$ and after
find r from condition $h_{1}=0 \Longleftrightarrow a+b+p+q=0$.
Consider now calculation of $s_{n}=S_{4}(n)$.
Applying (5),(6) for $a_{n}=n^{3}, k=0$ we obtain
$F\left(n^{3} f_{n}\right)=\left((n+1)^{3}-(n-1)^{3}\right) f_{n+1}-\left(n^{3}-(n-1)^{3}\right) f_{n}=$
$\left(6 n^{2}+2\right) f_{n+1}-\left(3 n^{2}-3 n+1\right) f_{n}$
$F\left(n^{3} f_{n+1}\right)=\left((n+1)^{3}-n^{3}\right) f_{n+1}+\left((n+1)^{3}-(n-1)^{3}\right) f_{n}=$
$\left(3 n^{2}+3 n+1\right) f_{n+1}+\left(6 n^{2}+2\right) f_{n}$
Since $g_{n}=\frac{2 n f_{n+1}-(n+1) f_{n}}{5}, f_{n}=F\left(g_{n}\right), n f_{n}=F\left(\frac{n g_{n}}{2}\right)$ and
$n f_{n+1}=F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{10}\right)$ then
$F\left(2 n^{3} f_{n+1}\right)-F\left(n^{3} f_{n}\right)=\left(6 n^{2}+6 n+2\right) f_{n+1}+\left(12 n^{2}+4\right) f_{n}-$

$$
\begin{aligned}
& \left(\left(6 n^{2}+2\right) f_{n+1}-\left(3 n^{2}-3 n+1\right) f_{n}\right)=15 n^{2} f_{n}+6 n f_{n+1}-(3 n-5) f_{n}= \\
& 15 n^{2} f_{n}+6 F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{10}\right)-3 F\left(\frac{n g_{n}}{2}\right)+5 F\left(g_{n}\right) \Longleftrightarrow \\
& 15 n^{2} f_{n}=F\left(2 n^{3} f_{n+1}\right)-F\left(n^{3} f_{n}\right)-6 F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{10}\right)+ \\
& 3 F\left(\frac{n g_{n}}{2}\right)-5 F\left(g_{n}\right)= \\
& F\left(2 n^{3} f_{n+1}-n^{3} f_{n}-\frac{3\left(\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}\right)}{5}+\frac{(3 n-10)}{2} \cdot \frac{2 n f_{n+1}-(n+1) f_{n}}{5}\right)= \\
& F\left(\frac{\left(10+7 n-15 n^{2}-10 n^{3}\right) f_{n}+\left(20 n^{3}-14 n\right) f_{n+1}}{10}\right)
\end{aligned}
$$

Thus $15 n^{2} f_{n}=F\left(\frac{\left(10+7 n-15 n^{2}-10 n^{3}\right) f_{n}+\left(20 n^{3}-14 n\right) f_{n+1}}{10}\right) \Longleftrightarrow$

$$
\begin{equation*}
n^{2} f_{n}=F\left(\frac{\left(10+7 n-15 n^{2}-10 n^{3}\right) f_{n}+\left(20 n^{3}-14 n\right) f_{n+1}}{150}\right) \tag{16}
\end{equation*}
$$

Since $S_{3}(n)=h_{n}=\frac{\left(5 n^{2}+3 n-2\right) f_{n}-6 n f_{n+1}}{50}, n f_{n+1}=F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{10}\right)$,
$n f_{n}=F\left(\frac{2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}}{10}\right)$ then $F\left(S_{4}(n)\right)=S_{3}(n) \Longleftrightarrow$
$F\left(s_{n}\right)=\frac{1}{10} \cdot n^{2} f_{n}+\frac{3}{50} \cdot n f_{n}-\frac{1}{25} f_{n}-\frac{3}{25} n f_{n+1}=$
$\frac{1}{10} \cdot F\left(\frac{\left(10+7 n-15 n^{2}-10 n^{3}\right) f_{n}+\left(20 n^{3}-14 n\right) f_{n+1}}{150}\right)+\frac{3}{50} \cdot F\left(\frac{2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}}{10}\right)-$
$\frac{1}{25} F\left(g_{n}\right)-\frac{3}{25} F\left(\frac{\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}}{10}\right)=F\left(\frac{\left(10+7 n-15 n^{2}-10 n^{3}\right) f_{n}+\left(20 n^{3}-14 n\right) f_{n+1}}{1500}+\right.$
$\left.\frac{3\left(2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}\right)}{500}-\frac{g_{n}}{25}-\frac{3\left(\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}\right)}{250}\right)=$
$F\left(\frac{\left(10+7 n-15 n^{2}-10 n^{3}\right) f_{n}+\left(20 n^{3}-14 n\right) f_{n+1}}{1500}+\frac{3\left(2 n^{2} f_{n+1}-\left(n^{2}+n\right) f_{n}\right)}{500}-\right.$
$\left.\frac{2 n f_{n+1}-(n+1) f_{n}}{125}-\frac{3\left(\left(n^{2}-n\right) f_{n+1}+2 n^{2} f_{n}\right)}{250}\right)=$
$F\left(\frac{\left(11+5 n-30 n^{2}-5 n^{3}\right) f_{n}+\left(10 n^{3}-10 n\right) f_{n+1}}{750}\right)$
Hence, $s_{n}=\frac{\left(11+5 n-30 n^{2}-5 n^{3}\right) f_{n}+\left(10 n^{3}-10 n\right) f_{n+1}}{750}+c_{1} f_{n+1}+c_{2} f_{n}$
Since $s_{0}=s_{0}=0$ then $c_{1}=0$ and $c_{2}=\frac{19}{750}$ and, therefore,
$s_{n}=\frac{\left(11+5 n-30 n^{2}-5 n^{3}\right) f_{n}+\left(10 n^{3}-10 n\right) f_{n+1}}{750}+\frac{19 f_{n}}{750}=$

$$
\begin{align*}
& \frac{\left(30+5 n-30 n^{2}-5 n^{3}\right) f_{n}+\left(10 n^{3}-10 n\right) f_{n+1}}{750}= \\
& \frac{(n-1)(n+1)\left(2 n f_{n+1}-(n+6) f_{n}\right)}{150} \\
& \text { Thus, } s_{n}=S_{4}(n)=\frac{(n-1)(n+1)\left(2 n f_{n+1}-(n+6) f_{n}\right)}{150} \tag{17}
\end{align*}
$$

Remark.

Since $S_{m}(n)=P_{m}(n) f_{n+1}+Q_{m}(n) f_{n}$, where $P_{m}(x), Q_{m}(x)$ some polynomials of degree less then m (because $F_{m}\left(S_{m}(n)\right)=0$,
where $F_{m}=F \circ \underset{m}{F} \circ \ldots \circ F$ times and charaterictic polynomial of F_{m} is
$\left.\left(x^{2}-x-1\right)^{m}\right)$ then we can obtain all coefficients of $P_{m}(x), Q_{m}(x)$ (excluding free coefficients) by subsitution $S_{m}(n)$ in (1) (of course in supposition that we know $S_{m-1}(n)$ in the form $P_{m-1}(n) f_{n+1}+Q_{m-1}(n) f_{n}$, that is in supposition that we know polynomials $\left.P_{m-1}(x), Q_{m-1}(x)\right)$.
And after using $S_{m}(0)=S_{m}(1)=0$ we can detrmine free terms of both polynomials.
Since $P_{m}(n+1) f_{n+2}+Q_{m}(n+1) f_{n+1}-P_{m}(n) f_{n+1}-Q_{m}(n) f_{n}-$
$P_{m}(n-1) f_{n}-Q_{m}(n-1) f_{n-1}=P_{m}(n+1)\left(f_{n+1}+f_{n}\right)+Q_{m}(n+1) f_{n+1}-$ $P_{m}(n) f_{n+1}-Q_{m}(n) f_{n}-P_{m}(n-1) f_{n}-Q_{m}(n-1)\left(\left(f_{n+1}-f_{n}\right)\right)=$
$f_{n+1}\left(P_{m}(n+1)+Q_{m}(n+1)-P_{m}(n)-Q_{m}(n-1)\right)+$
$f_{n}\left(P_{m}(n+1)-Q_{m}(n)-P_{m}(n-1)+Q_{m}(n-1)\right)=$
$f_{n+1}\left(P_{m}(n+1)-P_{m}(n)+Q_{m}(n+1)-Q_{m}(n-1)\right)+$
$f_{n}\left(P_{m}(n+1)-P_{m}(n-1)-Q_{m}(n)+Q_{m}(n-1)\right)$
then $F\left(S_{m}(n)\right)=P_{m-1}(n) f_{n+1}+Q_{m-1}(n) f_{n}$ implies

$$
\left\{\begin{array}{l}
P_{m}(n+1)-P_{m}(n)+Q_{m}(n+1)-Q_{m}(n-1)=P_{m-1}(n) \tag{18}\\
P_{m}(n+1)-P_{m}(n-1)-Q_{m}(n)+Q_{m}(n-1)=Q_{m-1}(n)
\end{array}\right.
$$

1. Mathematical Horizons, September,1966-Problem 55, Proposed by David M. Bloom.
